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ABSTRACT

Stereophonic music source separation (MSS) is a problem of
extracting individual source tracks, e.g. bass, drums, vocals, from
a stereo music recording. Deep neural network (DNN) based MSS
systems have demonstrated great promise though spatial panning
cues and time-frequency spectral structures in stereo music have
not yet been fully explored in such systems and methods. This
paper presents a spatially-informed MSS method using a bridging
band-split neural network that incorporates both spatial and spectral
information. The spatial panning angles of each target source
are used as input of the network, along with the time-frequency
spectrograms. Moreover, the inter-track correlations are exploited
for further performance improvement. Experiments show that the
proposed method outperforms significantly the baseline systems as
the result of using spatial cues, spectral characteristics, and inter-
track relationships.

Index Terms—Stereophonic music source separation, bridging
band-split network, spatial information

1. INTRODUCTION

Music source separation, a crucial task in music information
retrieval (MIR), has various applications such as transcription [1],
music remixing [2–4], and music education [5], to name but a
few. Existing MSS methods can be broadly categorized into two
classes: signal processing based and deep neural network (DNN)
based methods. The former uses the statistical properties between
different sources to separate the signals while the latter leverages the
representation learning capabilities of deep networks to separate the
mixture with supervised training.

With the rapid development of DNN and the associated
technologies and resources, DNN-based approaches have become
increasingly popular. In earlier studies, DNNs were used to estimate
either ideal ratio masks (IRMs) [6–11] or complex IRMs [12–16] to
reconstruct the signal in the time-frequency domain or the feature
domain, which has demonstrated the state-of-the-art performance
for MSS [17–26]. However, these methods still suffer from a
number of major limitations, including but not limited to: 1)
the spatial information is an inherent property of stereophonic
music as different instruments have different panning angles, but
such information is neglected in the existing methods; 2) the
time-frequency spectral structure, another important property of
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stereophonic music, is in general not fully exploited; 3) DNN
models are generally trained independently for different tracks while
the inter-track information is neglected. All the aforementioned
information, if properly used, should greatly improve the separation
performance.

To utilize inter-track information, based on the Open-Unmix
(UMX) [27], the CrossNet-UMX (X-UMX) [28] was proposed.
X-UMX incorporates a CrossNet with a bridging structure to
extract shared information between different network branches for
different output tracks. More recently, spatial cues were integrated
into X-UMX, based on which the so-called SpaInNet, a spatially-
informed stereophonic MSS system was developed [29]. By using
source panning angles as the a priori knowledge, this method
is able to further improve separation performance though spectral
characteristics of the music signals are still neglected in such system.

To explore the spectral structures for MSS, a method with
band-split recurrent neural network (BSRNN) was proposed [30–
32], which splits the full time-frequency spectrum into subbands
tailored for vocals and accompaniment, in which a dual-path RNN
(DPRNN), similar to the architecture in [33], extracts features from
the subbands and time frames to separate vocals or instruments from
a mono input. However, BSRNN trains models independently for
each output track, ignoring the inter-track information. As shown
in [28], leveraging mutual information between tracks is an effective
approach to enhancing separation performance.

In this work, we propose a spatially-informed CrossNet multi-
channel BSRNN system, which offers the following augmentations.
1) It extends BSRNN to handle multi-channel inputs by merging
features across channels in the band-split stage; 2) It incorporates
a CrossNet to share representations between network branches,
thereby exploiting the inter-track information; 3) It integrates spatial
cues in the form of source panning angles to further improve
separation. Together, these augmentations enable the modeling
of both spectral characteristics and inter-track relationships within
a multi-channel framework to leverage stereophonic information.
Simulation results demonstrate that the proposed system is able
to achieve significant performance gain in comparison with the
baseline approaches.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a music signal consists of signal components from K
sources. The output stereophonic signals x(t, f) ∈ CM×1 (M =
2 is the number of channels) in the short-time Fourier transform



Encoder 1
Feature

Extraction 1
Decoder 1

Encoder K
Feature

Extraction K
Decoder K

Shared feature Shared feature

… … …

Stereophonic music
Track 1

Track K
…

GN+Linear

GN+Linear

GN+Linear

…

Panning angles

Reshape

… … …

Reshape

Reshape

(a)

(b)

Angle information

Angle information

Angle information

Encoder k

real

imaginary

C

C

Fig. 1: (a) Pipeline of the proposed SpaIn-X-MBSRNN. (b) Architecture of the k-th encoder corresponding to the k-th source, where the
symbol “C” represents concatenation operation.

(STFT) domain can be expressed as

x(t, f) =

K∑
k=1

xk(t, f), (1)

xk(t, f) = [Xk,L(t, f) Xk,R(t, f)]
T , k = 1, 2, . . . ,K, (2)

where f and t denote the frequency-bin and time-frame indices,
respectively, xk(t, f) is signal from the k-th source, which could be
the vocal or one of the instruments, Xk,L(t, f) and Xk,R(t, f) are the
left and the right channels of the k-th source, and the superscript (·)T
denotes the transpose operator. By incorporating spatial information,
such as the panning angles, into the system, the DNN-based MSS
approach can be mathematically formulated as

y(t, f) = DNN [x(t, f),ϕ] , (3)

where DNN[·] represents the DNN-based separation system, ϕ =
[ϕ1 ϕ2 · · · ϕK ]T ∈ CK×1 is the vector of the panning angles
of K sources, and y(t, f) ∈ CK×1 is the K separated sources
corresponding to the K angles.

3. SPAIN-X-MBSRNN ARCHITECTURE

The proposed architecture, as shown in Fig. 1(a), consists of
three main components: a multi-channel band-split encoder that
incorporates spatial embeddings, a dual-path RNN for feature
extraction, and a mask estimation decoder for source separation.

3.1. Encoder

3.1.1. Spatial Embeddings

To integrate spatial information, this work adopts the spatial
embeddings approach from SpaInNet [29]. Specifically, the
panning angle −45◦ ≤ ϕk ≤ +45◦ is for the source k is used
to generate the spatial embeddings pk ∈ RI×1 to represent the
stereo position, where I is the dimension of the spatial embedding.
If 0◦ ≤ ϕk ≤ +45◦, pk is calculated as

pk(2i) = sin

(
ϕk

45
2i
I

)
, pk(2i+ 1) = cos

(
ϕk

45
2i
I

)
, (4)

for i = 1, 2, . . . , I/2. For the negative angles, i.e., −45◦ ≤ ϕk <
0◦, the spatial embedding is calculated as

pk(2i) = sin

(
ϕk

45
I−2i

I

)
, pk(2i+ 1) = cos

(
ϕk

45
I−2i

I

)
. (5)

Let us assume that the source location is fixed over time. Then, pk

can be extended along the time frame axis to form the full spatial
embedding Pk ∈ RI×T where each column equals pk.

3.1.2. Multi-Channel Band-Split with Spatial Embedding

The encoder adopts the band-split scheme from [30] to handle the
multi-channel inputs by incorporating spatial embeddings for every
source. As shown in Fig. 1(b), the encoder input X ∈ RF×T×2M ,



which consists of M channels, can be expressed as

X = {X(t)}Tt=1 , (6)

X(t) = [x(t, 1) x(t, 2) · · · x(t, F )]T , (7)

x(t, f) =
[
xT

re (t, f) xT
im(t, f)

]T
, (8)

where X(t) ∈ RF×2M is the input feature in the t-th time frame,
x(t, f) ∈ R2M×1 is the input vector at the (t, f) bin, and xre(t, f)
and xim(t, f) are the real and imaginary part of x(t, f), respectively.
Without loss of generality, let us assume that the full band of the k-th
source is split into a total of L subbands with the bandwidth of the
l-th band being Qk,l. The input feature can then be rewritten as

X(t) ≜
[
BT

k,1(t) BT
k,2(t) · · · BT

k,L(t)
]T

, (9)

where Bk,l(t) ∈ RQk,l×2M is the l-th subband spectrograms of
X(t) for the k-th source and

∑
l Qk,l = F . Note that the bandwidth

Qk,l can vary for different sources. Stacking Bk,l(t) into a vector,
adding the time axis to form B′

k,l ∈ R2MQk,l×T , and concatenating
with the spatial embedding to form the input feature of the encoder,
one can calculate the following output:

Dk = {Dk,l}Ll=1, (10)

Dk,l = Lineark,l
[
GroupNorm

(
[(B′

k,l)
T PT

k ]
T
)]

, (11)

where Dk ∈ RN×L×T is the output feature of the k-th encoder,
Dk,l ∈ RN×T is the subband feature corresponding to the l-
th subband, N is the feature dimension, and GroupNorm(·) and
Linear(·) denote, respectively, the group normalization layer and
the fully connected linear layer.

3.1.3. CrossNet through Bridging Architecture

To investigate shared features across various source branches, a
bridging architecture is incorporated prior to the feature extraction
and mask estimation modules, similar to [28]. Specifically, before
feature extraction, the first shared feature on the left of Fig. 1(a) is
generated through the bridging structure as

D′ =
1

K

K∑
k=1

Dk, (12)

where D′ ∈ RN×L×T denotes the first shared feature for feature
extraction. Note that in order to form D′ between the K sources,
the feature dimension N and the number of the subbands L must
be the same for all sources. By connecting the output features
from different encoders corresponding to separate sources, the
relationship between these sources can be jointly analyzed using the
shared feature.

3.2. Feature extraction

With the shared feature D′, the DPRNN from [30] is incorporated.
This module consists of K parallel branches with identical structures
to extract features for K sources. Each branch employs S repeating
layers with two long short-term memory (LSTM) structures
modeling sequence- and band-level features across dimensions T
and L, respectively. This process can be summarized as

Fk,s = Lineark,s,1
{
LSTMk,s,1

[
GroupNorm

(
D′)]} , (13)

F′
k,s = Lineark,s,2 {LSTMk,s,2 [GroupNorm (Fk,s)]} , (14)

where LSTMk,s,1(·) and LSTMk,s,2(·) represent two LSTM
structures in the sth repeated layer where s = 1, 2, . . . , S, and

F′
k,S ∈ RN×L×T is the output of the feature extraction module.

The second bridging architecture generates the second shared feature
for the mask estimation module, i.e.,

D′′ = {D′′
l }Ll=1, (15)

D′′
l =

1

K

K∑
k=1

[(DT
k,l (F

′
k,S,l)

T ]T , (16)

where D′′ ∈ R2N×L×T is the second shared feature and F′
k,S,l ∈

RN×T is the l-th matrix of the F′
k,S for l = 1, 2, . . . , L.

3.3. Decoder

With the second shared feature as the input, the mask for the k-th
source is estimated as

Gk = Decoder
(
D′′) , (17)

where Gk ∈ CF×T is the complex mask for the k-th source, and
Decoder(·) represents the decoder containing group normalization
followed by two fully connected linear layers with a hyperbolic
tangent (tanh) and a gated linear unit (GLU) as the activation
function. The estimated source can finally be obtained as

Yk = Gk ◦XL, (18)

where ◦ represents the Hadamard product (i.e., the element-wise
multiplication), XL = {

∑
k Xk,L}F,T

f=1,t=1 is the left-channel
mixture music signal, and Yk ∈ CF×T is the estimated k-th source.
Note that in this work the left channel is chosen as the reference
channel for source separation.

3.4. Training Objective

The multi-domain loss (MDL) [28] is used to optimize the proposed
method in both the STFT and time domains.

A mean squared error (MSE) loss is used between the estimated
and ground truth power spectrograms in the STFT domain as

LMSE =
1

KTF

K∑
k=1

T∑
t=1

F∑
f=1

[|Xk,L(t, f)| − |Yk(t, f)|]2 , (19)

where Yk(t, f) is the (t, f)-th element of Yk. For the time-
domain loss, an additional inverse STFT (iSTFT) is applied to both
Xk,L(t, f) and Yk(t, f). The scale-invariant signal-to-distortion
ratio (SI-SDR) [34] between the time-domain source signal xk,L(n)
and estimated signal yk(n) is then calculated, i.e.,

LSI-SDR = − 1

K

K∑
k=1

10 log10

[
E
(
|αxk,L|2

)
E (|αxk,L − yk|2)

]
, (20)

where xk,L = [xk,L(1) xk,L(2) · · · xk,L(N)]T is the time-
domain source signal vector, yk = [yk(1) yk(2) · · · yk(N)]T

is the estimated source vector, α = yT
k xk,L/∥xk,L∥2 is the scaling

factor, and E(·) denotes the expectation operation. The overall
multi-domain cost function is

L = LMSE + λLSI-SDR, (21)

where λ is the weighting parameter for the multi-domain loss.

4. EVALUATION

4.1. Experimental settings

To generate training data that simulates stereo signals, we use the
constant power panning (CPP) law to randomly assign panning



Models
Vocals Drum Bass Other All

uSDR cSDR uSDR cSDR uSDR cSDR uSDR cSDR uSDR cSDR

Mixture -10.02 -9.76 -4.73 -4.65 -8.83 -8.65 -8.69 -8.54 -8.07 -7.90

UMX [27] 4.21 3.63 5.13 5.17 3.86 4.04 2.23 2.19 3.86 3.76
X-UMX [28] 4.31 4.29 5.30 5.32 4.14 4.26 2.98 2.94 4.18 4.20

SpaIn-X-UMX [29] 5.07 4.77 5.96 5.92 5.03 4.90 3.67 3.59 4.93 4.80

MBSRNN 11.41 12.03 13.54 13.84 9.19 9.46 7.93 8.89 10.52 11.06
X-MBSRNN 11.31 11.97 13.08 13.22 11.03 11.52 9.12 9.67 11.14 11.60

SpaIn-X-MBSRNN 11.73 11.32 13.84 13.84 12.34 12.50 11.79 12.14 12.43 12.45

Table 1: The separation performance of the baseline and proposed methods on the spatialized MUSDB18-HQ dataset.

Frequency Band (kHz) < 1 1-4 4-8 8-16 16-20

Vocals/Other (Hz) 100 250 500 1k 2k
Drum/Bass (Hz) 50 250 1k 2k -

Table 2: Bandwidth for frequency bands.

angles to each vocal or accompaniment source signals. For the k-th
source signal xk(n), the left and right channels are defined through
CPP as follows:

xk,L(n) = (
√
2/2)(cosϕk + sinϕk)xk(n), (22)

xk,R(n) = (
√
2/2)(cosϕk − sinϕk)xk(n), (23)

where xk,L(n) and xk,R(n) are the left and right channel signals
of the simulated stereo signals corresponding to the k-th source,
respectively. All source signals are taken from the MUSDB18-HQ
dataset [35] with a sampling rate of 44.1kHz. For training and
validation, every audio track is partitioned into 3 second segments.
The panning angle for each source was randomly selected, with a
minimum separation of 10◦ between adjacent sources.

Data augmentation has been shown to play a critical role in
improving the effectiveness of MSS [36]. In this work, we utilized
an energy-based sound activity detection method to remove silent
segments during training, similar to [30]. The remaining active
segments are randomly mixed to increase diversity in the dataset.
We also apply random energy rescaling within ±5 dB and a random
dropout mechanism (with probability 0.05) to simulate inactive
sources.

The spatial embedding dimension I and feature dimension N
in the encoder are both set to 128. Similar to [30], for simplicity,
two bandwidth division schemes are used in this work, as shown
in Table 2. The remaining frequency range is treated as a single
subband. With the band-split schemes described above, the total
number of subbands for all sources is 41. For the feature extraction
module, the number of repeated stacks S is set to 3.

The test set of the MUSDB18-HQ database is used to evaluate
the baseline and proposed systems. After applying the same panning
process, the stereophonic music signals are partitioned into segments
with a segment length of 3 seconds and an overlapping of 0.5
seconds. Data augmentation is not used at this stage.

To evaluate the separation performance of the proposed systems,
the utterance-level SDR (uSDR) [37] and chunk-level SDR (cSDR)
[38] metrics are used. Note that proposed MBSRNN is a multi-
channel extension of the BSRNN in [30], the proposed X-MBSRNN

is the MBSRNN with a bridging structure through CrossNet,
and the proposed SpaIn-X-MBSRNN is the spatially-informed X-
MBSRNN. The extraction performances of the presented algorithms
are compared to those of Open-Unmix (UMX) [27], CrossNet-
UMX (X-UMX) [28], and spatially-informed X-UMX (SpaIn-X-
UMX) [29].

4.2. Results and discussion

The separation performance of the presented algorithms and
baselines for vocals and other instruments are shown in Table 1.
Compared to the three baseline systems, the proposed system with
band-split encoders and DPRNN feature extraction achieved clear
improvements in separation performance. This shows that a well-
designed subband scheme tailored to different spectral patterns is
beneficial.

In comparison with MBSRNN, X-MBSRNN achieved
noticeable performance improvement in separating bass and other
instruments though its separation performance for vocals and drums
is slightly worse. The overall performance is better, which shows
that incorporating inter-tracks information helps improve separation
performance. SpaIn-X-MBSRNN is shown to be the most effective
algorithm and its overall uSDR and cSDR reach, respectively,
12.43 dB and 12.45 dB, which are much higher than those of
all other studied methods. As seen, the performance difference
between SpaIn-X-MBSRNN and X-MBSRNN is more significant
for the category marked as “Other”. The underlying reason, we
believe, is because this category includes various instruments such
as piano and violin. In such case, incorporating spatial information
is more useful for improving performance.

5. CONCLUSION

In this paper, we presented a new method for stereophonic music
source separation. The inter-track information between different
sources is firstly explored through the bridging architecture in the
multi-channel band-split network. Further, by incorporating spatial
information into the bridging multi-channel band-split network, the
proposed method can efficiently separate vocals and instruments
using the panning angle of every source as the a priori information.
Simulation results showed that the proposed method outperformed
several state-of-the-art algorithms, which demonstrated the benefits
of utilizing spatial cues and tailored subband processing for
stereophonic music source separation.
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